/* * Copyright 2016 Hannes Schmelzer, OE5HPM * doing several cleanups and architecture changes, no functional change yet * * General purpose Reed-Solomon decoder for 8-bit symbols or less * Copyright 2003 Phil Karn, KA9Q * May be used under the terms of the GNU Lesser General Public License (LGPL) * * The guts of the Reed-Solomon decoder, meant to be #included * into a function body with the following typedefs, macros and variables supplied * according to the code parameters: * data_t - a typedef for the data symbol * data_t data[] - array of rs->nn data and parity symbols to be corrected in place * retval - an integer lvalue into which the decoder's return code is written * NROOTS - the number of roots in the RS code generator polynomial, * which is the same as the number of parity symbols in a block. Integer variable or literal. * rs->nn - the total number of symbols in a RS block. Integer variable or literal. * rs->pad - the number of pad symbols in a block. Integer variable or literal. * rs->alpha_to - The address of an array of rs->nn elements to convert Galois field * elements in index (log) form to polynomial form. Read only. * rs->index_of - The address of an array of rs->nn elements to convert Galois field * elements in polynomial form to index (log) form. Read only. * MODNN - a function to reduce its argument modulo rs->nn. May be inline or a macro. * rs->fcr - An integer literal or variable specifying the first consecutive root of the * Reed-Solomon generator polynomial. Integer variable or literal. * rs->prim - The primitive root of the generator poly. Integer variable or literal. * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this * undefined for production code * The memset(), memmove(), and memcpy() functions are used. The appropriate header * file declaring these functions (usually ) must be included by the calling * program. */ #include #include #include struct rs { unsigned int magic; /* struct magic */ int mm; /* Bits per symbol */ int nn; /* Symbols per block (= (1<= rs->nn) { x -= rs->nn; x = (x >> rs->mm) + (x & rs->nn); } return x; } #define MODNN(x) modnn(rs, x) #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define MAGIC 0xABCD6722 void free_rs_char(void *arg) { struct rs *rs = (struct rs *)arg; if (rs == NULL) return; if (rs->magic != MAGIC) return; if (rs->alpha_to != NULL) free(rs->alpha_to); if (rs->index_of != NULL) free(rs->index_of); if (rs->genpoly != NULL) free(rs->genpoly); free(rs); } /* Initialize a Reed-Solomon codec * symsize = symbol size, bits * gfpoly = Field generator polynomial coefficients * fcr = first root of RS code generator polynomial, index form * prim = primitive element to generate polynomial roots * nroots = RS code generator polynomial degree (number of roots) * pad = padding bytes at front of shortened block */ void *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad) { struct rs *rs; int i, j, sr,root,iprim; /* Check parameter ranges */ if (symsize < 0 || symsize > 8*sizeof(unsigned char)) return NULL; if (fcr < 0 || fcr >= (1<= (1<= (1<= ((1<magic = MAGIC; rs->mm = symsize; rs->nn = (1<pad = pad; rs->alpha_to = (unsigned char *)malloc(sizeof(unsigned char)*(rs->nn+1)); if (rs->alpha_to == NULL) { free(rs); return NULL; } rs->index_of = (unsigned char *)malloc(sizeof(unsigned char)*(rs->nn+1)); if (rs->index_of == NULL) { free(rs->alpha_to); free(rs); return NULL; } /* Generate Galois field lookup tables */ rs->index_of[0] = rs->nn; /* log(zero) = -inf */ rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ sr = 1; for (i = 0; i < rs->nn; i++) { rs->index_of[sr] = i; rs->alpha_to[i] = sr; sr <<= 1; if (sr & (1<nn; } if (sr != 1) { /* field generator polynomial is not primitive! */ free(rs->alpha_to); free(rs->index_of); free(rs); return NULL; } /* Form RS code generator polynomial from its roots */ rs->genpoly = (unsigned char *)malloc(sizeof(unsigned char)*(nroots+1)); if(rs->genpoly == NULL) { free(rs->alpha_to); free(rs->index_of); free(rs); return NULL; } rs->fcr = fcr; rs->prim = prim; rs->nroots = nroots; /* Find prim-th root of 1, used in decoding */ for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn) ; rs->iprim = iprim / prim; rs->genpoly[0] = 1; for (i = 0, root = fcr*prim; i < nroots; i++, root += prim) { rs->genpoly[i+1] = 1; /* Multiply rs->genpoly[] by @**(root + x) */ for (j = i; j > 0; j--) { if (rs->genpoly[j] != 0) rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)]; else rs->genpoly[j] = rs->genpoly[j-1]; } /* rs->genpoly[0] can never be zero */ rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)]; } /* convert rs->genpoly[] to index form for quicker encoding */ for (i = 0; i <= nroots; i++) rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; return rs; } int decode_rs_char(void *arg, unsigned char *data, int *eras_pos, int no_eras) { struct rs *rs = (struct rs *)arg; if (rs == NULL) return -1; if (rs->magic != MAGIC) return -1; int retval; int deg_lambda, el, deg_omega; int i, j, r,k; unsigned char u,q,tmp,num1,num2,den,discr_r; unsigned char lambda[rs->nroots+1], s[rs->nroots]; /* Err+Eras Locator poly * and syndrome poly */ unsigned char b[rs->nroots+1], t[rs->nroots+1], omega[rs->nroots+1]; unsigned char root[rs->nroots], reg[rs->nroots+1], loc[rs->nroots]; int syn_error, count; /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ for (i = 0; i < rs->nroots; i++) s[i] = data[0]; for (j = 1; j < rs->nn-rs->pad; j++) { for(i=0;inroots;i++) { if(s[i] == 0) { s[i] = data[j]; } else { s[i] = data[j] ^ rs->alpha_to[MODNN(rs->index_of[s[i]] + (rs->fcr+i)*rs->prim)]; } } } /* Convert syndromes to index form, checking for nonzero condition */ syn_error = 0; for (i = 0; i < rs->nroots; i++) { syn_error |= s[i]; s[i] = rs->index_of[s[i]]; } if (!syn_error) { /* if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ count = 0; goto finish; } memset(&lambda[1], 0, rs->nroots*sizeof(lambda[0])); lambda[0] = 1; if (no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = rs->alpha_to[MODNN(rs->prim*(rs->nn-1-eras_pos[0]))]; for (i = 1; i < no_eras; i++) { u = MODNN(rs->prim*(rs->nn-1-eras_pos[i])); for (j = i+1; j > 0; j--) { tmp = rs->index_of[lambda[j - 1]]; if(tmp != rs->nn) lambda[j] ^= rs->alpha_to[MODNN(u + tmp)]; } } #if DEBUG >= 1 /* Test code that verifies the erasure locator polynomial just constructed Needed only for decoder debugging. */ /* find roots of the erasure location polynomial */ for(i=1;i<=no_eras;i++) reg[i] = rs->index_of[lambda[i]]; count = 0; for (i = 1,k=rs->iprim-1; i <= rs->nn; i++,k = MODNN(k+rs->iprim)) { q = 1; for (j = 1; j <= no_eras; j++) if (reg[j] != rs->nn) { reg[j] = MODNN(reg[j] + j); q ^= rs->alpha_to[reg[j]]; } if (q != 0) continue; /* store root and error location number indices */ root[count] = i; loc[count] = k; count++; } if (count != no_eras) { printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras); count = -1; goto finish; } #if DEBUG >= 2 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for (i = 0; i < count; i++) printf("%d ", loc[i]); printf("\n"); #endif #endif } for (i = 0; i < rs->nroots+1; i++) b[i] = rs->index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while (++r <= rs->nroots) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++) { if ((lambda[i] != 0) && (s[r-i-1] != rs->nn)) { discr_r ^= rs->alpha_to[MODNN(rs->index_of[lambda[i]] + s[r-i-1])]; } } discr_r = rs->index_of[discr_r]; /* Index form */ if (discr_r == rs->nn) { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1],b,rs->nroots*sizeof(b[0])); b[0] = rs->nn; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0 ; i < rs->nroots; i++) { if(b[i] != rs->nn) t[i+1] = lambda[i+1] ^ rs->alpha_to[MODNN(discr_r + b[i])]; else t[i+1] = lambda[i+1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= rs->nroots; i++) b[i] = (lambda[i] == 0) ? rs->nn : MODNN(rs->index_of[lambda[i]] - discr_r + rs->nn); } else { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1],b,rs->nroots*sizeof(b[0])); b[0] = rs->nn; } memcpy(lambda,t,(rs->nroots+1)*sizeof(t[0])); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for (i = 0;i < rs->nroots+1; i++){ lambda[i] = rs->index_of[lambda[i]]; if(lambda[i] != rs->nn) deg_lambda = i; } /* Find roots of the error+erasure locator polynomial by Chien search */ memcpy(®[1], &lambda[1], rs->nroots*sizeof(reg[0])); count = 0; /* Number of roots of lambda(x) */ for (i = 1,k=rs->iprim-1; i <= rs->nn; i++,k = MODNN(k+rs->iprim)) { q = 1; /* lambda[0] is always 0 */ for (j = deg_lambda; j > 0; j--) { if (reg[j] != rs->nn) { reg[j] = MODNN(reg[j] + j); q ^= rs->alpha_to[reg[j]]; } } if (q != 0) continue; /* Not a root */ /* store root (index-form) and error location number */ #if DEBUG>=2 printf("count %d root %d loc %d\n",count,i,k); #endif root[count] = i; loc[count] = k; /* If we've already found max possible roots, * abort the search to save time */ if(++count == deg_lambda) break; } if (deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ count = -1; goto finish; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**rs->nroots). in index form. Also find deg(omega). */ deg_omega = deg_lambda-1; for (i = 0; i <= deg_omega;i++) { tmp = 0; for (j = i; j >= 0; j--) { if ((s[i - j] != rs->nn) && (lambda[j] != rs->nn)) tmp ^= rs->alpha_to[MODNN(s[i - j] + lambda[j])]; } omega[i] = rs->index_of[tmp]; } /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count-1; j >=0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != rs->nn) num1 ^= rs->alpha_to[MODNN(omega[i] + i * root[j])]; } num2 = rs->alpha_to[MODNN(root[j] * (rs->fcr - 1) + rs->nn)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = MIN(deg_lambda, rs->nroots-1) & ~1; i >= 0; i -=2) { if(lambda[i+1] != rs->nn) den ^= rs->alpha_to[MODNN(lambda[i+1] + i * root[j])]; } #if DEBUG >= 1 if (den == 0) { printf("\n ERROR: denominator = 0\n"); count = -1; goto finish; } #endif /* Apply error to data */ if (num1 != 0 && loc[j] >= rs->pad) { data[loc[j]-rs->pad] ^= rs->alpha_to[MODNN(rs->index_of[num1] + rs->index_of[num2] + rs->nn - rs->index_of[den])]; } } finish: if(eras_pos != NULL) { for (i = 0; i < count; i++) eras_pos[i] = loc[i]; } retval = count; return retval; }